
PROGRAMMING 
 
Under construction… 
 
IsoMax is a programming language based on Finite State Machine (FSM) concepts 
applied to software, with a procedural language (derived from Forth) underneath it. 
The closest description to the FSM construction type is a “One-Hot” Mealy type of 
Timer Augmented Finite State Machines. More on these concepts will come later.  
 

QUICK OVERVIEW  
 
What is IsoMax™? IsoMax™ is a real time operating system / language.  
 
How do you program in IsoMax™? You create state machines that can run in a virtually 
parallel architecture.  
 

Step Programming Action Syntax 
1 Name a state machine 

 

 
 

MACHINE <name> 

2 Select this state 
 

ON-MACHINE <name> 

3 Name any states appended on the 
machine 
 

 
 

APPEND-STATE <name> 
APPEND-STATE <name> 
… 

4 Describe transitions from states to states 
 

 

IN-STATE  
  <state> 
CONDITION 
  <Boolean> 
CAUSES 
  <action> 
THEN-STATE 
  <state> 
TO-HAPPEN 



5 Test and Install {as required} 
 
What do you have to write to make a state machine in IsoMax™? You give a machine a 
name, and then tell the system that’s the name you want to work on. You append any 
number of states to the machine. You describe any number of transitions between 
states. Then you test the machine and when satisfied, install it into the machine chain.  
 
What is a transition? A transition is how a state machine changes states. What’s in a 
transition? A transition has four components; 1) which state it starts in, 2) the condition 
necessary to leave, 3) the action to take when the condition comes true, and 4) the state 
to go to next time. Why are transitions so verbose? The structure makes the transitions 
easy to read in human language. The constructs IN-STATE, CONDITION, CAUSES, 
THEN-STATE and TO-HAPPEN are like the five brackets around a table of four things.  
 
 

IN-STATE 
\ 

CONDITION 
/\ 

CAUSES 
/\ 

THEN-STATE 
/\ 

TO-HAPPEN 
/ 

<from state> <Boolean> <action> <to state> 
 
In a transition description the constructs IN-STATE, CONDITION, CAUSES, THEN-
STATE and TO-HAPPEN are always there (with some possible options to be set out later). 
The “meat slices” between the “slices of bread” are the hearty stuffing of the 
description. You will fill in those portions to your own needs and liking. The language 
provides “the bread” (with only a few options to be discussed later). 
 
So here you have learned a bit of the syntax of IsoMax™. Machines are defined, states 
appended. The transitions are laid out in a pattern, with certain words surrounding 
others. Procedural parts are inserted in the transitions between the standard clauses.  
 
The syntax is very loose compared to some languages. What is important is the order 
or sequence these words come in. Whether they occur on one line or many lines, with 
one space or many spaces between them doesn’t matter. Only the order is important.  
 

THREE MACHINES 
 
Now let’s take a first step at exploring IsoMax™ the language by looking at some very 
simple examples. We’ll explore the language with what we’ve just tested earlier, the 
LED words. We’ll add some machines that will use the LED’s as outputs, so we can 
visually “see” how we’re coming along.  
 



REDTRIGGER  
 
First let’s make a very simple machine. Since it is so short, at least in V0.3 and later, 
it’s presented first without detailed explanation, entered and tested. Then we will 
explain the language to create the machine step by step  
 
 
( THESE GRAY’D TEXT LINES ARE PATCHES FOR V0.2 UPDATE TO V0.3 
( IF YOU”VE GOT V0.2 JUST ENTER GRAY’D VERBATUM.  
( IF YOU’VE GOT V0.3, IGNORE, ALREADY IN THE LANGUAGE 
 
HEX 
: OFF?  
  1 =  
  IF 
    2DUP 3 + @ SWAP FFFF XOR AND OVER 3 + ! 
    2DUP 2 + @ SWAP FFFF XOR AND OVER 2 + ! 
    1 + @ AND 0= 
  ELSE 
    SWAP DROP DUP @ FCFE AND OVER ! @ FF7F AND 0=  
  THEN 
; 
DECIMAL 
 
MACHINE REDTRIGGER ON-MACHINE REDTRIGGER APPEND-STATE RT 
IN-STATE RT CONDITION PA7 OFF? CAUSES REDLED ON THEN-STATE RT TO-HAPPEN 
 
RT SET-STATE ( INSTALL REDTRIGGER 
EVERY 50000 CYCLES SCHEDULE-RUNS REDTRIGGER 
 

There you have it, a complete real time program in two lines of IsoMax™, and one 
additional line to install it. A useful virtual machine is made here with one state and 
one transition.  
 
This virtual machine acts like a non-retriggerable one-shot made in hardware. (NON-
RETRIGGERABLE ONE-SHOT TIMER: Produces a preset timed output signal on the 
occurrence of an input signal. The timed output response may begin on either the 
leading edge or the trailing edge of the input signal. The preset time (in this case: 
infinity) is independent of the duration of the input signal.) For an example of a 
hardware non-retriggerable one-shot, see 
http://www.philipslogic.com/products/hc/pdf/74hc221.pdf. 
 

http://www.philipslogic.com/products/hc/pdf/74hc221.pdf


 
 

If PA7 goes low briefly, the red LED turns on and stays on even if PA7 then changes. 
PA7 normally has a pull up resistor that will keep it “on”, or “high” if nothing is 
attached. So attaching push button from PA7 to ground, or even hooking a jumper test 
lead to ground and pushing the other end into contact with the wire lead in PA7, will 
cause PA7 to go “off” or “low”, and the REDLED will come on.  
 

 
(In these examples, any port line that can be an input could be used. PA7 here, PB7 
and PB6 later, were chosen because they are at the bottom of J1 and the easiest for you 
to access.) 
 
Now if you want, type these lines shown above in. (If you are reading this manual 
electronically, you should be able to highlight the text on screen and copy the text to 
the clipboard with Cntl-C. Then you may be able to paste into your terminal program. 
On MaxTerm, the command to down load the clipboard is Alt-V. On other windows 
programs it might be Cntl-V.) 
 



Odds are your red LED is already on. When the IsoPod™ powers up, it’s designed to 
have the LED’s on, unless programmed otherwise by the user. So to be useful we must 
reset this one-shot. Enter:  
 
REDLED OFF  

 
Now install the REDTRIGGER by installing it in the (now empty) machine chain. 
 
RT SET-STATE ( INSTALL REDTRIGGER 
EVERY 50000 CYCLES SCHEDULE-RUNS REDTRIGGER 

 

 
 

Ground PA7 with a wire or press the push button, and see the red LED come on. 
Remove the ground or release the push button. The red LED does not go back off. The 
program is still running, even though all visible changes end at that point. To see that, 
we’ll need to manually reset the LED off so we can see something happen again. 
Enter. 
 
REDLED OFF  

 
If we ground PA7 again, the red LED will come back on, so even though we are still 
fully interactive with the IsoPod™ able to type commands like REDLED OFF in 
manually, the REDTRIGGER machine is running in the background. 
 
Now let’s go back through the code, step-by-step. We’ll take it nice and easy. We’ll 
take the time explain the concepts of this new language we skipped over previously.  
 
Here in this box, the code for REDTRIGGER “pretty printed” so you can see how the 
elements of the program relate to a state machine diagram. Usually you start to learn a 
language by learning the syntax, or how and where elements of the program must be 
placed. The syntax of the IsoMax™ language is very loose. Almost anything can go on 
any line with any amount of white space between them as long as the sequence 
remains the same. So in the pretty printing, most things are put on a separate line and 
have spaces in front of them just to make the relationships easy to see. Beyond the 



basic language syntax, a few words have a further syntax associated to them. They 
must have new names on the same line as them. In this example, MACHINE, ON-
MACHINE and APPEND-STATE require a name following. You will see that they do. 
More on syntax will come later. 
 

 

PROGRAM TEXT         EQUIVALENT GRAPHIC 
 
MACHINE REDTRIGGER  
 
  ON-MACHINE REDTRIGGER  
    APPEND-STATE RT 
 
IN-STATE 
  RT 
CONDITION 
  PA7 OFF? 
CAUSES  
  REDLED ON  
THEN-S
  RT  

TATE  

TO-HAPPEN 
 
 

TO STATE FROM STATE 

BOOLEAN 

ACTION 

MAKE A MACHINE 

ADD A TRANSITION 

ADD A STATE 
PA7 OFF? 

REDLED ON 

RT 

In this example, the first program line, we tell IsoMax™ we’re making a new virtual 
machine, named REDTRIGGER. (Any group of characters without a space or a backspace 
or return will do for a name. You can be very creative. Use up to 32 characters. Here 
the syntax is MACHINE followed by the chosen name.) 
 
MACHINE REDTRIGGER 

 
That’s it. We now have a new machine. This particular new machine is named 
REDTRIGGER. It doesn’t do anything yet, but it is part of the language, a piece of our 
program. 
 
For our second program line, we’ll identify REDTRIGGER as the machine we want to 
append things to. The syntax to do this is to say ON-MACHINE and the name of the 
machine we want to work on, which we named REDTRIGGER so the second program line 
looks like this: 
 
  ON-MACHINE REDTRIGGER 
  

(Right now, we only have one machine installed. We could have skipped this second 
line. Since there could be several machines already in the IsoPod™ at the moment, it is 
good policy to be explicit. Always use this line before appending states. When you 
have several machines defined, and you want to add a state or transition to one of 



them, you will need that line to pick the machine being appended to. Otherwise, the 
new state or transition will be appended to the last machine worked on.) 
 
All right. We add the machine to the language. We have told the language the name of 
the machine to add states to. Now we’ll add a state with a name. The syntax to do this 
is to say APPEND-STATE followed by another made-up name of our own. Here we 
add one state RT like this: 
 
    APPEND-STATE RT 
 
States are the fundamental parts of our virtual machine. States help us factor our 
program down into the important parts. A state is a place where the computer’s outputs 
are stable, or static. Said another way, a state is place where the computer waits. Since 
all real time programs have places where they wait, we can use the waits to allow 
other programs to have other processes. There is really nothing for a computer to do 
while its outputs are stable, except to check if it is time to change the outputs.  
 
(One of the reasons IsoMax™ can do virtually parallel processing, is it never allows the 
computer to waste time in a wait, no backwards branches allowed. It allows a check for 
the need to leave the state once per scheduled time, per machine.) 
 
To review, we’ve designed a machine and a sub component state. Now we can set up 
something like a loop, or jump, where we go out from the static state when required to 
do some processing and come back again to a static wait state.  
 
The rules for changing states along with the actions to do if the rule is met are called 
transitions. A transition contains the name of the state the rule applies to, the rules 
called the condition, what to do called the action, and “where to go” to get into another 
state. (We have only one state in this example, so the last part is easy. There is no 
choice. We go back into the same state. In machines with more than one state, it is 
obviously important to have this final piece.) 
 
There’s really no point in have a state in a machine without a transition into or out of it. 
If there is no transition into or out of a state, it is like designing a wait that cannot start, 
cannot end, and cannot do anything else either.  
 
On the other hand, a state that has no transition into it, but does have one out of it, 
might be an “initial state” or a “beginning state”. A state that has a transition into it, but 
doesn’t have one out of it, might be a “final state” or an “ending state”. However, most 
states will have at least one (or more) transition entering the state and one (or more) 
transition leaving the state. In our example, we have one transition that leaves the 
state, and one that comes into the state. It just happens to be the same one. 



 
Together a condition and action makes up a transition, and transitions go from one 
specific state to another specific state. So there are four pieces necessary to describe a 
transition; 1) The state the machine starts in. 2) the condition to leave that state 3) the 
action taken between states and 4) the new state the machine goes to.  
 
Looking at the text box with the graphic in it, we can see the transitions four elements 
clearly labeled. In the text version, these four elements are printed in bold. In the 
equivalent graphic they are labeled as “FROM STATE”, “BOOLEAN”, “ACTION” 
and “TO STATE”.  
 
The “FROM STATE” is RT. The “BOOLEAN” is a simple phrase checking I/O PA7 
OFF?. The “ACTION” is REDLED ON. The “TO STATE” is again RT. 
 

So to complete our state machine program, we must define the transition we need. The 
syntax to make a transition, then, is to fill in the blanks between this form: IN-STATE 
<name> CONDITION <Boolean> CAUSES <action> THEN-STATE <name> TO-HAPPEN. 
 
Whether the transition is written on one line as it was at first: 
 
IN-STATE RT CONDITION PA7 OFF? CAUSES REDLED ON THEN-STATE RT TO-HAPPEN 

  
Or pretty printed on several lines as it was in the text box: 
 
IN-STATE 
  RT 
CONDITION 
  PA7 OFF? 
CAUSES  
  REDLED ON  
THEN-STATE  
  RT  
TO-HAPPEN 
 

The effect is the same. The five bordering words are there, and the four user supplied 
states, condition and action are in the same order and either way do the same thing. 
 
After the transition is added to the program, the program can be tested and installed as 
shown above. 
 
State machine diagrams (the graphic above being an example) 
are nothing new. They are widely used to design hardware. They 
come with a few minor style variations, mostly related to how the 
outputs are done. But they are all very similar. The figure to the 
right is a hardware Quadrature design with four states. 



 
While FSM diagrams are also widely known in programming as an abstract 
computational element, there are few instances where they are used to design 
software. Usually, the tools for writing software in state machines are very hard to 
follow. The programming style doesn’t seem to resemble the state machine design, and 
is often a slow, table-driven “read, process all inputs, computation and output” scheme. 
 
IsoMax™ technology has overcome this barrier, and gives you the ability to design 
software that looks “like” hardware and runs “like” hardware (not quite as fast of 
course, but in the style, or thought process, or “paradigm” of hardware) and is 
extremely efficient. The Virtually Parallel Machine Architecture lets you design many 
little, hardware-like, machines, rather than one megalith software program that lumbers 
through layer after layer of if-then statements. (You might want to refer to the IsoMax 
Reference Manual to understand the language and its origins.) 
 

ANDGATE1 
 

Let’s do another quick little machine and install both machines so you can see them 
running concurrently. 
 
( THESE GREY’D TEXT LINES ARE PATCHES FOR V0.2 UPDATE TO V0.3 
 
HEX 
: ON?  
  1 =  
  IF 
    2DUP 3 + @ SWAP FFFF XOR AND OVER 3 + ! 
    2DUP 2 + @ SWAP FFFF XOR AND OVER 2 + ! 
    1 + @ AND 
  ELSE 
    SWAP DROP DUP @ FCFE AND OVER ! @ FF7F AND 0= NOT 
  THEN 
; 
DECIMAL 
 
MACHINE ANDGATE1 ON-MACHINE ANDGATE1 APPEND-STATE X 
IN-STATE X CONDITION YELLED OFF PA7 ON? PB7 ON? AND CAUSES YELLED ON THEN-STATE 
X TO-HAPPEN 
 
X SET-STATE ( INSTALL ANDGATE1 
MACHINE-CHAIN CHN1 REDTRIGGER ANDGATE1 END-MACHINE-CHAIN 
EVERY 50000 CYCLES SCHEDULE-RUNS CHN1 
 

There you have it, another complete real time program in three lines of IsoMax™, and 
one additional line to install it. A useful virtual machine is made here with one state 
and one transition. This virtual machine acts (almost) like an AND gate made in 
hardware.  
For example: http://www.philipslogic.com/products/hc/pdf/74hc08.pdf 

http://www.philipslogic.com/products/hc/pdf/74hc08.pdf


 

  
 
Both PA7 and PB7 must be on, or high, to allow the yellow LED to remain on (most of 
the time). So by attaching push buttons to PA7 and PB7 simulating micro switches this 
little program could be used like an interlock system detecting “cover closed”. 
 

PROGRAM TEXT         EQUIVALENT GRAPHIC 
 
MACHINE ANDGATE1  
 
  ON-MACHINE ANDGATE1  
    APPEND-STATE X 
 
IN-STATE 
  X 
CONDITION 

FF   YELLED O
  PA7 ON? 
  PB7 ON? AND  
CAUSES  
  YELLED ON  
THEN-
  X  

STATE  

TO-HAPPEN 

MAKE A MACHINE 

ADD A TRANSITION 

ADD A STATE 

YELLED OFF 
PA7 ON? 

PB7 ON? AND 

YELLED ON 

X 



 
 
(Now it is worth mentioning, the example is a bit contrived. When you try to make a state 
machine too simple, you wind up stretching things you shouldn’t. This example could 
have acted exactly like an AND gate if two transitions were used, rather than just one. 
Instead, a “trick” was used to turn the LED off every time in the condition, then turn it on 
only when the condition was true. So a noise spike is generated a real “and” gate doesn’t 
have. The trick made the machine simpler, it has half the transitions, but it is less 
functional. Later we’ll revisit this machine in detail to improve it.) 
 
Notice both machines share an input, but are using the opposite sense on that input. 
ANDGATE1 looks for PA7 to be ON, or HIGH. The internal pull up will normally make 
PA7 high, as long as it is programmed for a pull up and nothing external pulls it down. 
 
Grounding PA7 enables REDTRIGGER’s condition, and inhibits ANDGATE1’s condition. 
Yet the two machines coexist peacefully on the same processor, even sharing the same 
inputs in different ways. 
 
To see these machines running enter the new code, if you are still running REDTRIGGER, 
reset (toggle the DTR line on the terminal, for instance, Alt-T twice in MaxTerm or 
cycle power) and download the whole of both programs. 
 
Initialize REDTRIGGER for action by turning REDLED OFF as before. Grounding PA7 now 
causes the same result for REDTRIGGER, the red LED goes on, but the opposite effect 
for the yellow LED, which goes off while PA7 is grounded. Releasing PA7 turns the 
yellow LED back on, but the red LED remains on.  
Again, initialize REDTRIGGER by turning REDLED OFF. Now ground PB7. This has no 
effect on the red LED, but turns off the yellow LED while grounded. Grounding both 
PA7 and PB7 at the same time also turns off the yellow LED, and turns on the red LED 
if not yet set. 
 
 

 
 



Notice how the tightly the two machines are intertwined. Perhaps you can imagine how 
very simple machines with combinatory logic and sharing inputs and feeding back 
outputs can quickly start showing some complex behaviors. Let’s add some more 
complexity with another machine sharing the PA7 input. 
 

BOUNCELESS 
 
We have another quick example of a little more complex machine, one with one state 
and two transitions. 
 
MACHINE BOUNCELESS ON-MACHINE BOUNCELESS APPEND-STATE Y 
IN-STATE Y CONDITION PA7 OFF? CAUSES GRNLED OFF THEN-STATE Y TO-HAPPEN 
IN-STATE Y CONDITION PB6 OFF? CAUSES GRNLED ON THEN-STATE Y TO-HAPPEN 
 
Y SET-STATE ( INSTALL BOUNCELESS 

 
MACHINE-CHAIN 3EASY 
REDTRIGGER 
ANDGATE 
BOUNCELESS 
END-MACHINE-CHAIN 
 
EVERY 50000 CYCLES SCHEDULE-RUNS 3EASY 

 
There you have yet another complete design, initialization and installation of a virtual 
machine in four lines of IsoMax™ code.  
 
Another name for the machine in this program is “a bounceless switch”. 
 

 

 
 
Bounceless switches filter out any noise on their input buttons, and give crisp, one-edge 
output signals. They do this by toggling state when an input first becomes active, and 
remaining in that state. If you are familiar with hardware, you might recognize the two 
gates feed back on each other as a very elementary flip-flop. The flip-flop is a bistable 
on/off circuit is the basis for a memory cell. The bounceless switch flips when one input 
is grounded, and will not flip back until the other input is grounded. 
 



By attaching push buttons to PA7 and PB6 the green LED can be toggled from on to off 
with the press of the PA7 button, or off to on with the press of the PB6. The PA7 button 
acts as a reset switch, and the PB6 acts as a set switch.  

 

PROGRAM TEXT         EQUIVALENT GRAPHIC 
 
MACHINE BOUNCELESS  
 
  ON-MACHINE BOUNCELESS  
    APPEND-STATE Y 
 
IN-S
  Y 

TATE 

CONDITION 
  PA7 OFF?  
CAUSES 
  GRNLED OFF 
THEN-STATE 
  Y 
TO-HAPPEN 
 
IN-S
  Y 

TATE 

CONDITION 
  PB6 OFF?  
CAUSES 
  GRNLED ON  
THEN-STATE 
  Y 
TO-HAPPEN

MAKE A MACHINE 

ADD A TRANSITION 

ADD A TRANSITION 

GRNLED ON 

PB6 OFF? 

PA7 OFF? 

GRNLED OFF 

Y 

ADD A STATE 

You can see here, in IsoMax™, you can simulate hardware machines and circuits, with 
just a few lines of code. Here we created one machine, gave it one state, and appended 
two transitions to that state. Then we installed the finished machine along with the two 
previous machines. All run in the background, freeing us to program more virtual 
machines that can also run in parallel, or interactively monitor existing machines from 
the foreground. 
 

 
 
Notice all three virtual hardware circuits are installed at the same time, they operate 
virtually in parallel, and the IsoPod™ is still not visibly taxed by having these machines 



run in parallel. Further, all three machines share one input, so their behavior is strongly 
linked. 
 

SYNTAX AND FORMATTING 
 
Let’s talk a second about pretty printing, or pretty formatting. To go a bit into syntax 
again, you’ll need to remember the following. Everything in IsoMax™ is a word or a 
number. Words and numbers are separated spaces (or returns).  
 
Some words have a little syntax of their own. The most common cases for such words 
are those that require a name to follow them. When you add a new name, you can use 
any combinations of characters or letters except (obviously) spaces and backspaces, 
and carriage returns. So, when it comes to pretty formatting, you can put as much on 
one line as will fit (up to 80 characters). Or you can put as little on one line as you 
wish, as long as you keep your words whole. However, some words will require a 
name to follow them, so those names will have to be on the same line. 
 
In the examples you will see white space (blanks) used to add some formatting to the 
source text. MACHINE starts at the left, and is followed by the name of the new machine 
being added to the language. ON-MACHNE is indented right by two spaces. APPEND-
STATE X is indented two additional spaces. This is the suggested, but not mandatory, 
offset to achieve pretty formatting. Use two spaces to indent for levels. The transitions 
are similarly laid out, where the required words are positioned at the left, and the user 
programming is stepped in two spaces. 
 
 

MULTIPLE STATES/MULTIPLE TRANSITIONS 
 
Before we leave the previous “Three Machines”, let’s review the AND machine again, 
since it had a little trick in it to keep it simple, just one state and one transition. The 
trick does simplify things, but goes too far, and causes a glitch in the output. To make 
an AND gate which is just like the hardware AND we need at least two transitions. The 
previous example, BOUNCELESS was the first state machine with more than one 
transition. We’ll follow this precedent and redo ANDGATE2 with two transitions.  
 

ANDGATE2 
 
( THESE GREY’D TEXT LINES ARE PATCHES FOR V0.2 UPDATE TO V0.3 
( ASSUME ON? ALREADY DEFINED AS IN OTHER PROGRAM  



 
MACHINE ANDGATE2 
  ON-MACHINE ANDGATE2 
    APPEND-STATE X 
 
IN-STATE  
  X 
CONDITION 
  PA7 ON? 
  PB7 ON? AND 
CAUSES 
  YELLED ON 
THEN-STATE 
  X 
TO-HAPPEN 
 
IN-STATE  
  X 
CONDITION 
  PA7 OFF? 
  PB7 OFF? OR 
CAUSES 
  YELLED OFF 
THEN-STATE 
  X 
TO-HAPPEN 
 
X SET-STATE ( INSTALL ANDGATE2 
EVERY 50000 CYCLES SCHEDULE-RUNS ANDGATE2 
 

 

PROGRAM TEXT         EQUIVALENT GRAPHIC 
 
MACHINE ANDGATE2  
 
ON-MACHINE ANDGAT

    APPEND-STATE X 
E2 

 
IN-STATE 
  X  
CONDITION  
  PA7 ON? 
  PB7 ON? AND 
CAUSES  
  YELLED ON  
THEN
  X 

-STATE 

TO-HAPPEN 
 
IN-S
  X 

TATE 

CONDITION 
  PA7 OFF? 
  PB7 OFF? OR 
CAUSES 
  YELLED OFF  
THEN
  X 

-STATE 

TO-HAPPEN 

ADD A TRANSITION 

YELLED OFF 

PA7 OFF? PB7 OFF? OR 

APPEND STATE 

MAKE A MACHINE 

ADD A TRANSITION 

PA7 ON? PB7 ON? AND 

YELLED ON  

   X 

  



 

Compare the transitions in the two ANDGATE’s to understand the trick in ANDGATE1. 
Notice there is an “action” included in the ANDGATE1 condition clause. See the YELLED 
OFF statement (highlighted in bold) in ANDGATE1, not present in ANDGATE2? Further 
notice the same phrase YELLED OFF appears in the second transition of ANDGATE2 as the 
object action of that transition.  
 
 

TRANSITION COMPARISON 
 

ANDGATE1 
 

ANDGATE2 
IN-STATE 
  X 
CONDITION 
  YELLED OFF 
  PA7 ON? 
  PB7 ON? AND  
CAUSES  
  YELLED ON  
THEN-STATE  
  X  
TO-HAPPEN 

IN-STATE 
  X  
CONDITION 
 
  PA7 ON? 
  PB7 ON? AND 
CAUSES  
  YELLED ON  
THEN-STATE 
  X 
TO-HAPPEN 

IN-STATE 
  X 
CONDITION 
 
  PA7 OFF? 
  PB7 OFF? OR 
CAUSES 
  YELLED OFF  
THEN-STATE 
  X 
TO-HAPPEN 

 

The way this trick worked was by using an action in the condition clause, every time 
the scheduler ran the chain of machines, it would execute the conditions clauses of all 
transitions on any active state. Only if the condition was true, did any action of a 
transition get executed. Consequently, the trick used in ANDGATE1 caused the action of 
the second transition to happen when conditionals (only) should be running. This meant 
it was as if the second transition of ANDGATE2 happened every time. Then if the 
condition found the action to be a “wrong” output in the conditional, the action of 
ANDGATE1 ran and corrected the situation. The brief time the processor took to correct 
the wrong output was the “glitch” in ANDGATE1’s output. 
 
Now this AND gate, ANDGATE2, is just like the hardware AND, except not as fast as 
most modern versions of AND gates implemented in random logic on silicon. The 
latency of the outputs of ANDGATE2 are determined by how many times ANDGATE2 runs 
per second. The programmer determines the rate, so has control of the latency, to the 
limits of the CPU’s processing power. 
 
The original ANDGATE1 serves as an example of what not to do, yet also just how 
flexible you can be with the language model. Using an action between the CONDITION 
and CAUSES phrase is not prohibited, but is considered not appropriate in the paradigm 
of Isostructure.  
 



An algorithm flowing to determine a single Boolean value should be the only thing in 
the condition clause of a transition. Any other action there slows the machine down, 
being executed every time the machine chain runs.  
 
Most of the time, states wait. A state is meant to take no action, and have no output. 
They run the condition only to check if it is time to stop the wait, time to take an action 
in a transition.  
 
The actions we have taken in these simple machines if very short. More complex 
machines can have very complex actions, which should only be run when it is 
absolutely necessary. Putting actions in the conditional lengthens the time it takes to 
operate waiting machines, and steals time from other transitions.  
 
Why was it necessary to have two transitions to do a proper AND gate? To find the 
answer look at the output of an AND gate. There are two possible mutually exclusive 
outputs, a “1” or a “0”. Once action cannot set an output high or low. One output can 
set a bit high. It takes a different output to set a bit low. Hence, two separate outputs 
are required.  
 

ANDOUT 
 
Couldn’t we just slip an action into the condition spot and do away with both 
transitions? Couldn’t we just make a “thread” to do the work periodically? Yes, 
perhaps, but that would break the paradigm. Let’s make a non-machine definition. The 
output of our conditional is in fact a Boolean itself. Why not define: 
 
: ANDOUT PA7 ON? PB7 ON? AND IF YELLED ON ELSE YELLED OFF THEN ; 

 
Why not forget the entire “machine and state” stuff, and stick ANDOUT in the machine 
chain instead? There are no backwards branches in this code. It has no Program 
Counter Capture (PCC) Loops. It runs straight through to termination. It would work. 
 
This, however, is another trick you should avoid. Again, why? This code does one of 
two actions every time the scheduler runs. The actions take longer than the Boolean 
test and transfer to another thread. The system will run slower, because the same 
outputs are being generated time after time, whether they have changed or not. While 
the speed penalty in this example is exceedingly small, it could be considerable for 
larger state machines with more detailed actions. 
 
A deeper reason exists that reveals a great truth about state machines. Notice we have 
used a state machine to simulate a hardware gate. What the AND gate outputs next is 



completely dependent on what the inputs are next. An AND gate has an output which 
has no feedback. An AND gate has no memory. State machines can have memory. 
Their future outputs depend on more than the inputs present. A state machine’s outputs 
can also depend on the history of previous states. To appreciate this great difference 
between state machines and simple gates, we must first look a bit further at some 
examples with multiple states and multiple transitions. 
 

ANDGATE3 
 
We are going to do another AND gate version, ANDGATE3, to illustrate this point about 
state machines having multiple states. This version will have two transitions and two 
states. Up until now, our machines have had a single state. Machines with a single state 
in general are not very versatile or interesting. You need to start thinking in terms of 
machines with many states. This is a gentle introduction starting with a familiar 
problem. Another change is in effect here. We have previously first written the code so 
as to make the program small in terms of lines. We used this style to emphasize small 
program length. From now on, we are going to pretty print it so it reads as easily as 
possible, instead.  
 
 
( THESE GREY’D TEXT LINES ARE PATCHES FOR V0.2 UPDATE TO V0.3 
( ASSUME ON? ALREADY DEFINED  

 
MACHINE ANDGATE3 
  ON-MACHINE ANDGATE3 
    APPEND-STATE X0 
    APPEND-STATE X1 
 
IN-STATE  
  X0 
CONDITION 
  PA7 ON? PB7 ON? AND 
CAUSES 
  YELLED ON 
  PB0 ON 
THEN-STATE 
  X1 
TO-HAPPEN 
 
IN-STATE  
  X1 
CONDITION 
  PA7 OFF? PB7 OFF? OR 
CAUSES 
  YELLED OFF 
  PB0 OFF 
THEN-STATE 
  X0 
TO-HAPPEN 
 
X0 SET-STATE ( INSTALL ANDGATE3 
EVERY 50000 CYCLES SCHEDULE-RUNS ANDGATE3 



 

 

PROGRAM TEXT         EQUIVALENT GRAPHIC 
 
MACHINE ANDGATE3  
 
  ON-MACHINE ANDGATE3 
    APPEND-STATE  X0
    APPEND-STATE X1 
 

 
IN-STATE 
  X0  
CONDITION  
  PA7 ON? PB7 ON? AND 
CAUSES  

ON    YELLED 
  PB0 ON 
THEN-S
  X1  

TATE 

TO-HAPPEN 
 
IN-ST
  X1 

ATE 

CONDITION 
  PA7 OFF? PB7 OFF? OR 
CAUSES 

FF   YELLED O
  PB0 OFF 
THEN-ST
   X0  

ATE 

TO-HAPPEN 

ADD A TRANSITION 

YELLED OFF 
PB0 OFF  

PA7 OFF? PB7 OFF? OR 

X1 

 

MAKE A MACHINE 

ADD A TRANSITION 

PA7 ON? PB7 ON? AND 

YELLED ON  
PB0 ON 

X0 

Notice how similar this version of an AND gate, ANDGATE3, is to the previous version, 
ANDGATE2. The major difference is that there are two states instead of one. We also 
added some “spice” to the action clauses, doing another output on PB0, to show how 
actions can be more complicated. 
 
 

INTER-MACHINE COMMUNICATIONS 
 
Now imagine ANDGATE3 is not an end unto itself, but just a piece of a larger problem. 
Now let’s say another machine needs to know if both PA7 and PB7 are both high? If 
we had only one state, it would have to recalculate the AND phrase, or read back what 
ANDGATE3 had written as outputs. Rereading written outputs is sometimes dangerous, 
because there are hardware outputs which is cannot be read back. If we use different 
states for each different output, the state information itself stores which state is active. 
All an additional machine has to do to discover the status of PA7 and PB7 AND’ed 
together is check the stored state information of ANDGATE3. To accomplish this, simply 
query the state this way. 



 
X0 IS-STATE?  
 
A Boolean value will be returned that is TRUE if either PA7 and PB7 are low. This 
Boolean can be part of a condition in another state. On the other hand: 
 
X1 IS-STATE?  
 
will return a TRUE value only if PA7 and PB7 are both high.  
 

STATE MEMORY 
 
So you see, a state machine’s current state is as much as an output as the outputs PB0 ON 
and YELLOW LED ON are, less likely to have read back problems, and faster to check. 
The current state contains more information than other outputs. It can also contain 
history. The current state is so versatile, in fact, it can store all the pertinent history 
necessary to make any decision on past inputs and transitions. This is the deep truth 
about state machines we sought.  
 
 

9-2 THE FINITE-STATE MODEL -- BASIC DEFINITION 
 
The behavior of a finite-state machine is described as a sequence of events 
that occur at discrete instants, designated t = 1, 2, 3, etc. Suppose that a 
machine M has been receiving inputs signals and has been responding by 
producing output signals. If now, at time t, we were to apply an input 
signal x(t) to M, its response z(t) would depend on x(t), as well as the past 
inputs to M.  
 
From: SWITCHING AND FINITE AUTOMATA THEORY, KOHAVI 

 
No similar solution is possible with short code threads. While variables can indeed be 
used in threads, and threads can again reference those variable, using threads and 
variables leads to deeply nested IF ELSE THEN structures and dreaded spaghetti code 
which often invades and complicates real time programs. 

BOUNCELESS+ 
 
To put the application of state history to the test, let’s revisit our previous version of the 
machine BOUNCELESS. Refer back to the code for transitions we used in BOUNCELESS.  
 



 
STATE Y 

IN-STATE 
  Y 
CONDITION 
  PA7 OFF?  
CAUSES 
  GRNLED OFF 
THEN-STATE 
  Y 
TO-HAPPEN 

IN-STATE 
  Y 
CONDITION 
  PB6 OFF?  
CAUSES 
  GRNLED ON  
THEN-STATE 
  Y 
TO-HAPPEN 

 
This code worked fine, as long as PA7 and PB6 were pressed one at a time. The green 
LED would go on and off without noise or bounces between states. Notice however, 
PA7 and PB6 being low at the same time is not excluded from the code. If both lines go 
low at the same time, the output of our machine is not well determined. One state 
output will take precedence over the other, but which it will be cannot be determined 
from just looking at the program. Whichever transition gets first service will win. 
 

 

PROGRAM TEXT         EQUIVALENT GRAPHIC 
 
MACHINE BOUNCELESS+  
 
  ON-MACHINE BOUNCELESS+ 
    APPEND-STATE WAITOFF 
    APPEND-STATE WAITON 
 

 
IN-STATE 
  WAITOFF  
CONDITION  
  PA7 OFF? PB7 ON? AND 
CAUSES  
  GRNLED ON  
THEN-STATE 
  WAITON  
TO-HAPPEN 
 
IN-STATE 
  WAITON 
CONDITION 
  PB7 OFF? PA7 ON? AND 
CAUSES 
  GRNLED OFF 
THEN-STATE 
  WAITOFF  
TO-HAPPEN 

 PA7 OFF? PB7 ON? AND 

WAITOFF 

  PB7 

 

Now consider how BOUNCELESS+ can be improved if th
integrated into the problem. In order to have state histo
we must have multiple states. As we did with our ANDG
The new states are WAITON and WAITOFF and run our tw
states.  
GRNLED ON
 

OFF? PA7 ON? AND 

WAITON 
GRNLED OFF 
e state machines history is 
ry of any significance, however, 
ATE3 let’s add one more state. 
o transitions between the two 



At first blush, the new machine looks more complicated, probably slower, but not 
significantly different from the previous version. This is not true however. When the 
scheduler calls a machine, only the active state and its transitions are considered. So in 
the previous version each time Y was executed, two conditionals on two transitions 
were tested (assuming no true condition). In this machine, two conditionals on only one 
transition are tested. As a result this machine runs slightly faster. 
 
Further, the new BOUNCELESS+ machine is better behaved. (In fact, it is better behaved 
than the original hardware circuit shown!) It is truly bounceless, even if both switches 
are pressed at once. The first input detected down either takes us to its state or inhibits 
the release of its state. The other input can dance all it wants, as long as the one first 
down remains down. Only when the original input is released can a new input cause a 
change of state. In the rare case where both signals occur at once, it is the history, the 
existing state, which determines the status of the machine. 
 

 
STATE WAITOFF 

 
STATE WAITON 

IN-STATE 
  WAITOFF  
CONDITION  
  PA7 OFF? PB7 ON? AND 
CAUSES  
  GRNLED ON  
THEN-STATE
  WAITON  

 

TO-HAPPEN 

IN-STATE 
  WAITON 
CONDITION 
  PB7 OFF? PA7 ON? AND 
CAUSES 
  GRNLED OFF 
THEN-STATE 
  WAITOFF  
TO-HAPPEN 

 
 

DELAYS 
 
Let’s say we want to make a steady blinker out of the green LED. In a conventional 
procedural language, like BASIC, C, FORTH, or Java, etc., you’d probably program a 
loop blinking the LED on then off. Between each loop would be a delay of some kind, 
perhaps a subroutine you call which also spins in a loop wasting time.  
 

Assembler  BASIC  C  JAVA FORTH  
LOOP1 LDX # 0 FOR I=1 TO N While ( 1 ) BEGIN 
LOOP2 DEX 
      BNE LOOP2 

GOSUB DELAY { delay(x);   DELAY 

      LDAA #1 
      STAA PORTA 
      LDX # 0 

LET PB=TRUE   out(1,portA1);   LED-ON 

LOOP3 DEX 
      BNE LOOP3 

GOSUB DELAY   delay(x);   DELAY 

      LDAA #N 
      STAA PORTA 

Let PB=FALSE   out(0,portA1);   LED-OFF 

      JMP LOOP1 NEXT } AGAIN 



 
Here’s where IsoMax™ will start to look different from any other language you’re 
likely to have ever seen before. The idea behind Virtually Parallel Machine 
Architecture is constructing virtual machines, each a little “state machine” in its own 
right. But this IsoStructure requires a limitation on the machine, themselves. In 
IsoMax™, there are no program loops, there are no backwards branches, there are no 
calls to time wasting delays allowed. Instead we design machines with states. If we 
want a loop, we can make a state, then write a transition from that state that returns to 
that state, and accomplish roughly the same thing. Also in IsoMax™, there are no delay 
loops.  
 
The whole point of having a state is to allow “being in the state” to be “the delay”.  
 
Breaking this restriction will break the functionality of IsoStructure, and the parallel 
machines will stop running in parallel. If you’ve ever programmed in any other 
language, your hardest habit to break will be to get away from the idea of looping in 
your program, and using the states and transitions to do the equivalent of looping for 
you. 
 
A valid condition to leave a state might be a count down of passes through the state 
until a 0 count reached. Given the periodicity of the scheduler calling the machine 
chain, and the initial value in the counter, this would make a delay that didn’t “wait” in 
the conventional sense of backwards branching.  
 

BLINKGRN 
 
Now for an example of a delay using the count down to zero, we make a machine 
BLINKGRN. Reset your IsoPod™ so it is clean and clear of any programs, and then begin. 
 
MACHINE BLINKGRN 
  ON-MACHINE BLINKGRN 
    APPEND-STATE BG1 
    APPEND-STATE BG2 

 
The action taken when we leave the state will be to turn the LED off and reinitialize 
the counter. The other half of the problem in the other state we go to is just the 
reversed. We delay for a count, then turn the LED back on.  
 
Since we’re going to count, we need two variables to work with. One contains the 
count, the other the initial value we count down from. Let’s add a place for those 
variables now, and initialize them 
 



ADD STATES CNT  DEC&TEST? 

: -LOOPVAR <BUILDS HERE P, 1- DUP , , DOES> 
  P@ DUP @ 0= IF DUP 1 + @ SWAP ! TRUE ELSE 1-! FALSE THEN ;  
100 -LOOPVAR CNT 

 
 
IN-STATE 
   BG1  
CONDITION  
   CNT 
CAUSES  
   GRNLED OFF  
THEN-STATE 
   BG2  
TO-HAPPEN 

 
IN-STATE 
   BG2 
CONDITION 
   CNT 
CAUSES 
   GRNLED ON  
THEN-STATE 
   BG1  
TO-HAPPEN 
 

 

PROGRAM TEXT         EQUIVALENT GRAPHIC 
 
MACHINE BLINKGRN  
 
  ON-MACHINE BLINKGRN 
    APPEND-STATE BG1 
    APPEND-STATE BG2 
 
100 0 LOOPVAR CNT   
 
IN-STATE 
  BG1  
CONDITION  
  CNT  
CAUSES  
  GRNLED OFF  
THEN-STATE 
  BG2  
TO-HAPPEN 
 
IN-STATE 
  BG2 
CONDITION 
  CNT 
CAUSES 
  GRNLED ON  
THEN-STATE 
  BG1  
TO-HAPPEN 

GRNLED ON  

 CNT 

BG1 

  CNT 

BG2 

GRNLED OFF 



Above, the two transitions are “pretty printed” to make the four components of a 
transition stand out. As discussed previously, as long as the structure is in this order it 
could just as well been run together on a single line (or so) per transition, like this 
 
IN-STATE BG1 CONDITION CNT CAUSES GRNLED OFF THEN-STATE BG2 TO-HAPPEN 

 
IN-STATE BG2 CONDITION CNT CAUSES GRNLED ON THEN-STATE BG1 TO-HAPPEN 

 
Finally, the new machine must be installed and tested 
 
BG1 SET-STATE ( INSTALL BLINKGRN 
EVERY 50000 CYCLES SCHEDULE-RUNS BLINKGRN 
 

The result of this program is that the green LED blinks on and off. Every time the 
scheduler runs the machine chain, control is passed to whichever state BG1 or BG2 is 
active. The -LOOPVAR created word CNT is decremented and tested. When the CNT 
reaches zero, it is reinitialize back to the originally set value, and passes a Boolean on 
to be tested by the transition. If the Boolean is TRUE, the action is initiated.  
 

 
 
The GRNLED is turned ON of OFF (as programmed in the active state) and the other state is 
set to happen the next control returns to this machine. 
 

SPEED 
 
You’ve seen how to write a machine that delays based on a counter. Let’s now try a 
slightly less useful machine just to illustrate how fast the IsoPod™ can change state. 
First reset your machine to get rid of the existing machines. 
 

ZIPGRN 
 
MACHINE ZIPGRN 
 



  ON-MACHINE ZIPGRN 
    APPEND-STATE ZIPON 
    APPEND-STATE ZIPOFF 
 
IN-STATE ZIPON CONDITION TRUE CAUSES GRNLED OFF THEN-STATE ZIPOFF  
TO-HAPPEN 
 
IN-STATE ZIPOFF CONDITION TRUE CAUSES GRNLED ON THEN-STATE ZIPON  
TO-HAPPEN 
 
ZIPON SET-STATE  

 
Now rather than install our new machine we’re going to test it by running it “by hand” 
interactively. Type in: 
 
ZIPON SET-STATE 
ZIPGRN 

 

 
 

ZIPGRN should cause a change in the green LED. The machine runs as quickly as it can 
to termination, through one state transition, and stops. Run it again. Type:  
 
ZIPGRN 
                                            
 

 

 
 
Once again, the green LED should change. This time the machine starts in the state 
with the LED off. The always TRUE condition makes the transition’s action happen and 
the next state is set to again, back to the original state. As many times as you run it, the 
machine will change the green LED back and forth.  
 



Now with the machine program and tested, we’re ready to install the machine into the 
machine chain. The phrase to install a machine is : 
 
   EVERY n CYCLES SCHEDULE-RUNS word 
 

So for our single machine we’d say: 
 
   ZIPON SET-STATE 
   EVERY 5000 CYCLES SCHEDULE-RUNS ZIPGRN 
 

Now if you look at your green LED, you’ll see it is slightly dimmed.  
 

 
 
That’s because it is being turned off half the time, and is on half the time. But it is 
happening so fast you can’t even see it. 
 

REDYEL 
 
Let’s do another of the same kind. This time lets do the red and yellow LED, and have 
them toggle, only one on at a time. Here we go: 
 
MACHINE REDYEL 
 
  ON-MACHINE REDYEL 
    APPEND-STATE REDON 
    APPEND-STATE YELON 
 
IN-STATE REDON CONDITION TRUE CAUSES REDLED OFF YELLED ON THEN-STATE  
YELON TO-HAPPEN 
 
IN-STATE YELON CONDITION TRUE CAUSES REDLED ON YELLED OFF THEN-STATE  
REDON TO-HAPPEN 
 

Notice we have more things happening in the action this time. One LED is turned on 
and one off in the action. You can have multiple instructions in an action. 
 
Test it. Type: 
 
REDON SET-STATE 
REDYEL 



REDYEL 
REDYEL 
REDYEL 
 

See the red and yellow LED’s trade back and forth from on to off and vice versa.  
 
 

 
 
All this time, the ZIPGRN machine has been running in the background, because it is in 
the installed machine chain. Let’s replace the installed machine chain with another. So 
we define a new machine chain with both our virtual machines in it, and install it. 
 
 
MACHINE-CHAIN CHN2 
  ZIPGRN 
  REDYEL 
END-MACHINE-CHAIN  
 
REDON SET-STATE 
EVERY 5000 CYCLES SCHEDULE-RUNS CHN2 
 

With the new machine chain installed, all three LED’s look slightly dimmed.  
 

 
 
Again, they are being turned on and off a thousand times a second. But to your eye, 
you can’t see the individual transitions. Both our virtual machines are running in virtual 
parallel, and we still don’t see any slow down in the interactive nature of the IsoPod™. 
 
So what was the point of making these two machines? Well, these two machines are 
running faster than the previous ones. The previous ones were installed with 50,000 



cycles between runs. That gave a scan-loop repetition of 100 times a second. Fine for 
many mechanical issues, on the edge of being slow for electronic interfaces. These last 
examples were installed with 5,000 cycles between runs. The scan-loop repetition was 
1000 times a second. Fine for many electronic interfaces, that is fast enough. Now let’s 
change the timing value. Redo the installation with the SCHEDULE-RUNS command. 
 
The scan-loop repetition is 10,000 times a second.  
 
EVERY 500 CYCLES SCHEDULE-RUNS CHN2 
 

Let’s see if we can press our luck. 
 
EVERY 100 CYCLES SCHEDULE-RUNS CHN2 

 
Even running two machines 50,000 times a second in high-level language, there is still 
time left over to run the foreground routine. This means, two separate tasks are being 
started and running a series of high-level instructions 50,000 times a second. This 
shows the IsoPod™ is running more than four hundred thousand high-level instructions 
per second. The IsoPod™ performance is unparalleled in any small computer available 
today. 
 

TRINARIES 
 
With the state machine structures already given, and a simple input and output words 
many useful machines can be built. Almost all binary digital control applications can be 
written with the trinary operators.  
 
As an example, let’s consider a digital thermostat. The thermostat works on a digital 
input with a temperature sensor that indicates the current temperature is either above 
or below the current set point. The old style thermostats had a coil made of two 
dissimilar metals, so as the temperature rose, the outside metal expanded more rapidly 
than the interior one, causing a mercury capsule to tip over. The mercury moving to 
one end of the capsule or the other made or broke the circuit. The additional weight of 
mercury caused a slight feedback widening the set point. Most heater systems are 
digital in nature as well. They are either on or off. They have no proportional range of 
heating settings, only heating and not heating. So in the case of a thermostat, 
everything necessary can be programmed with the machine format already known, and 
a digital input for temperature and a digital output for the heater, which can be 
programmed with trinaries. 
 



Input trinary operators need three parameters to operate. Using the trinary operation 
mode of testing bits and masking unwanted bits out would be convenient. This mode 
requires: 1) a mask telling which bits in to be checked for high or low settings, 2) a 
mask telling which of the 1 possible bits are to be considered, and 3) the address of the 
I/O port you are using. The keywords which separate the parameters are, in order: 1) 
SET-MASK, 2) CLR-MASK and 3) AT-ADDRESS. Finally, the keyword FOR-INPUT 
finishes the defining process, identifying the trinary operator in effect. 
 
 
DEFINE <name> TEST-MASK <mask> DATA-MASK <mask> AT-ADDRESS <address> FOR-INPUT 

 
Putting the keywords and parameters together produces the following lines of IsoMax™ 
code. Before entering hexadecimal numbers, the keyword HEX invokes the use of the 
hexadecimal number system. This remains in effect until it is change by a later 
command. The numbering system can be returned to decimal using the keyword 
DECIMAL: 
 
HEX 
DEFINE TOO-COLD? TEST-MASK 01 DATA-MASK 01 AT-ADDRESS 0FB1 FOR-INPUT 
DEFINE TOO-HOT?  TEST-MASK 01 DATA-MASK 00 AT-ADDRESS 0FB1 FOR-INPUT 
DECIMAL 
 
Output trinary operators also need three parameters. In this instance, using the trinary 
operation mode of setting and clearing bits would be convenient. This mode requires: 
1) a mask telling which bits in the output port are to be set, 2) a mask telling which bits 
in the output port are to be cleared, and 3) the address of the I/O port. The keywords 
which proceed the parameters are, in order: 1) SET-MASK, 2) CLR-MASK and 3) AT-
ADDRESS. Finally, the keyword FOR-OUTPUT finishes the defining process, 
identifying which trinary operator is in effect. 
 
DEFINE <name> AND-MASK <mask> XOR-MASK <mask> AT-ADDRESS <address> FOR-OUTPUT 
DEFINE <name> CLR-MASK <mask> SET-MASK <mask> AT-ADDRESS <address> FOR-OUTPUT 

 
A single output port line is needed to turn the heater on and off. The act of turning the 
heater on is unique and different from turning the heater off, however. Two actions 
need to be defined, therefore, even though only one I/O line is involved. PA1 was 
selected for the heater control signal.  
 
When PA1 is high, or set, the heater is turned on. To make PA1 high, requires PA1 to 
be set, without changing any other bit of the port. Therefore, a set mask of 02 indicates 
the next to least significant bit in the port, corresponding to PA1, is to be set. All other 
bits are to be left alone without being set. A clear mask of 00 indicates no other bits of 
the port are to be cleared.  
 



When PA1 is low, or clear, the heater is turned off. To make PA1 low, requires PA1 to 
be cleared, without changing any other bit of the port. Therefore, a set mask of 00 
indicates no other bits of the port are to be set. A clear mask of 02 indicates the next to 
least significant bit in the port, corresponding to PA1, is to be cleared. All other bits are 
to be left alone without being cleared.  
 
Putting the keywords and parameters together produces the following lines of IsoMax™ 
code: 
 
HEX 
DEFINE HEATER-ON  SET-MASK 02 CLR-MASK 00 AT-ADDRESS 0FB0 FOR-OUTPUT 
DEFINE HEATER-OFF SET-MASK 00 CLR-MASK 02 AT-ADDRESS 0FB0 FOR-OUTPUT 
DECIMAL 
 
Only a handful of system words need to be covered to allow programming at a system 
level, now. 
 
 

PROCEDURAL PROGRAMMING 
 
The FSM portions of IsoMax™ are now covered. What remains to be discussed is the 
procedural portions of the conditions and actions.  
 
 
 
END-MACHINE-CHAIN                     
MACHINE-CHAIN 
SCHEDULE-RUNS 
CYCLES 
EVERY 
DINT 
EINT 
STOP-TIMER 
TCFOVFLO 
TCFTICKS 
END-PROC 
PROC 
AS-TAG 
FOR-INPUT 
FOR-OUTPUT 
WITH-VALUE 
SET-MASK 
CLR-MASK 
XOR-MASK 
AND-MASK 
DATA-MASK 
TEST-MASK 
AT-ADDR 



IS-STATE? 
SET-STATE 
TO-HAPPEN 
NEXT-TIME 
THIS-TIME 
THEN-STATE 
CAUSES 
CONDITION 
IN-STATE 
ON-MACHINE 
APPEND-STATE 
MACHINE 
CURSTATE 
 
 
ALLOC 
RAM 
DEFINE 
\ 
PFMOVE 
PFDP 
PFERASE 
PF! 
EEERASE 
PTYPE 
PCOUNT 
P, 
PC, 
PALLOT 
PHERE 
PDP 
PC! 
PC@ 
P@ 
P! 
TD3 
TD2 
RS422XCV 
RS232XMT 
PD0 
PD1 
PD2 
PD3 
PB0 
PB1 
PB2 
PB3 
PB4 
PB5 
PB6 
PB7 
PA0 
PA1 
PA2 
PA3 
PA4 
PA5 



PA6 
PA7 
GRNLED 
YELLED 
REDLED 
I/O 
OFF 
ON 
IS 
FALSE 
TRUE 
 
( 
@ 
C@ 
! 
C! 
2@ 
2! 
: 
; 
+ 
- 
1-! 
1+! 
+! 
* 
/ 
>< 
SWAP 
2OVER 
2SWAP 
DUP 
2DUP 
OVER 
ROT 
2ROT 
PICK 
ROLL 
-ROLL 
DROP 
2DROP 
>R 
R> 
= 
NOT 
0= 
D0= 
0> 
0< 
U< 
< 
DU< 
D< 
D= 
> 
AND 



OR 
XOR 
IF 
THEN 
ELSE 
BEGIN 
UNTIL 
REPEAT 
WHILE 
AGAIN 
END 
DO 
LOOP 
+LOOP 
K 
J 
I 
R@ 
LEAVE 
EXIT 
KEY 
EMIT 
?TERMINAL 
S->D 
ABS 
DABS 
MIN 
DMIN 
MAX 
DMAX 
SPACES 
DEPTH 
CR 
TYPE 
COUNT 
-TRAILING 
1+ 
2+ 
1- 
2- 
2/ 
2* 
D+ 
D- 
D2/ 
/MOD 
MOD 
*/MOD 
*/ 
UM* 
UM/MOD 
NEGATE 
DNEGATE 
CONSTANT 
VARIABLE 
2CONSTANT 
2VARIABLE 



 
SF! 
SF@ 
FTAN 
FCOS 
FSIN 
FATAN2 
FATAN 
F? 
FSQRT 
F2/ 
F2* 
F.S 
FNUMBER 
E. 
F. 
(E.) 
(F.) 
F** 
FALOG 
FEXP 
2**X 
FLN 
FLOG 
LOG2 
ODD-POLY 
POLY 
FLOOR 
FROUND 
FLITERAL 
PI 
E 
PLACES 
FLOAT+ 
FLOATS 
FVARIABLE 
FCONSTANT 
F, 
F! 
F@ 
FABS 
FMIN 
FMAX 
F< 
F0< 
F0= 
FNEGATE 
F>D 
S>F 
D>F 
F/ 
F* 
F- 
F+ 
FDROP 
FSWAP 
FOVER 



FDUP 
FNIP 
FDEPTH 
FSP 
FSP0 
 
TOGGLE 
SP! 
RP@ 
RP! 
UABORT 
WARNING 
R0 
SMUDGE 
DLITERAL 
MESSAGE 
ERROR 
?ERROR 
?COMP 
?EXEC 
?PAIRS 
?CSP 
?STACK 
@! 
@@ 
EXECUTE 
SP@ 
CMOVE> 
CMOVE 
;S 
CODE-SUB 
CODE 
END-CODE 
USER 
. 
.R 
D. 
U. 
U.R 
D.R 
#S 
# 
SIGN 
#> 
<# 
? 
EXPECT 
QUERY 
BL 
STATE 
CURRENT 
CONTEXT 
BLK 
DP 
FLD 
DPL 
>IN 



BASE 
S0 
TIB 
#TIB 
SPAN 
C/L 
PAD 
HERE 
ALLOT 
, 
 
C, 
SPACE 
?DUP 
TRAVERSE 
LATEST 
COMPILE 
[ 
] 
HEX 
DECIMAL 
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